Thursday, 18 December 2014

itemprop='blogPost' itemscope='itemscope' itemtype=''>


Like a linear power supply, the switched mode power supply too converts the available unregulated ac or dc input voltage to a regulated dc output voltage. However in case of SMPS with input supply drawn from the ac mains, the input voltage is first rectified and filtered using a capacitor at the rectifier output. The unregulated dc voltage across the capacitor is then fed to a high frequency dc-to-dc converter. Most of the dc-to-dc converters used in SMPS circuits have an intermediate high frequency ac conversion stage to facilitate the use of a high frequency transformer for voltage scaling and isolation. In contrast, in linear power supplies with input voltage drawn from ac mains, the mains voltage is first stepped down (and isolated) to the desired magnitude using a mains frequency transformer, followed by rectification and filtering. The high frequency transformer used in a SMPS circuit is much smaller in size and weight compared to the low frequency transformer of the linear power supply circuit.

The ‘Switched Mode Power Supply’ owes its name to the dc-to-dc switching converter for conversion from unregulated dc input voltage to regulated dc output voltage. The switch employed is turned ‘ON’ and ‘OFF’ (referred as switching) at a high frequency. During ‘ON’ mode the switch is in saturation mode with negligible voltage drop across the collector and emitter terminals of the switch where as in ‘OFF’ mode the switch is in cut-off mode with negligible current through the collector and emitter terminals. On the contrary the voltageregulating switch, in a linear regulator circuit, always remains in the active region.
Details of some popular SMPS circuits, with provisions for incorporating high frequency transformer for voltage scaling and isolation, have been discussed in next few lessons. In this lesson a simplified schematic switching arrangement is described that omits the transformer action. In fact there are several other switched mode dc-to-dc converter circuits that do not use a high frequency transformer. In such SMPS circuits the unregulated input dc voltage is fed to a high frequency voltage chopping circuit such that when the chopping circuit (often called dc to dc chopper) is in ON state, the unregulated voltage is applied to the output circuit that includes the load and some filtering circuit. When the chopper is in OFF state, zero magnitude of voltage is applied to the output side. The ON and OFF durations are suitably controlled such that the average dc voltage applied to the output circuit equals the desired magnitude of output voltage. The ratio of ON time to cycle time (ON + OFF time) is known as duty ratio of the chopper circuit. A high switching frequency (of the order of 100 KHz) and a fast control over the duty ratio results in application of the desired mean voltage along with ripple voltage of a very high frequency to the output side, consisting of a low pass filter circuit followed by the load. The high frequency ripple in voltage is effectively filtered using small values of filter capacitors and inductors. A schematic chopper circuit along with the output filter is shown in Fig.1 

Fig 1
 Some other switched mode power supply circuits work in a slightly different manner than the dc-to-dc chopper circuit discussed above. Details of some of these circuits have been discussed in following lessons.

SMPS versus linear power supply

As discussed above, in a linear regulator circuit the excess voltage from the unregulated dc input supply drops across a series element (and hence there is power loss in proportion to this voltage drop) whereas in switched mode circuit the unregulated portion of the voltage is removed by modulating the switch duty ratio. The switching losses in modern switches (like: MOSFETs) are much less compared to the loss in the linear element.
In most of the switched mode power supplies it is possible to insert a high frequency transformer to isolate the output and to scale the output voltage magnitude. In linear power supply the isolation and voltage-scaling transformer can be put only across the low frequency utility supply. The low frequency transformer is very heavy and bulky in comparison to the high frequency transformer of similar VA rating. Similarly the output voltage filtering circuit, in case of low frequency ripples is much bulkier than if the ripple is of high frequency. The switched mode circuit produces ripple of high frequency that can be filtered easily using smaller volume of filtering elements.
Linear power supply though more bulky and less efficient has some advantages too when compared with the switched mode power supply. Generally the control of the linear power supply circuit is much simpler than that of SMPS circuit. Since there is no high frequency switching, the switching related electro-magnetic interference (EMI) is practically absent in linear power supplies but is of some concern in SMPS circuits. Also, as far as output voltage regulation is concerned the linear power supplies are superior to SMPS. One can more easily meet tighter specifications on output voltage ripples by using linear power supplies
My Blogger Tricks